Efectos patogénicos de la acrilamida para la salud. Una revisión

Autores/as

Palabras clave:

acrilamida, salud, toxicidad, genotoxicidad, carcinogenicidad, neurotoxicidad

Resumen

En abril de 2002, un grupo de investigadores suecos dio a conocer que algunos alimentos ricos en almidón y pobres en proteínas, sometidos a procesos con temperaturas mayores a 120 °C (fritura, horneado, asado y tostado) contenían el procancerígeno conocido como acrilamida, un “probable carcinógeno para los humanos” —mutágeno de categoría 2 y tóxico para la reproducción de categoría 3 según la Unión Europea—, comportándose como neurotóxico tras exposiciones agudas. La revisión tiene como objetivo mostrar una actualización de los avances en investigaciones sobre la toxicidad de la acrilamida como un aspecto preocupante en el tema alimentario, y exponer los mecanismos de la formación de este compuesto en los alimentos, sus efectos tóxicos, los métodos analíticos usados en su determinación, los niveles detectados en distintos alimentos y estudios recientes sobre su ingesta. Para ello se realizaron búsquedas en las bases de datos PubMed, SciELO, LILACS y ClinicalKey. Los estudios epidemiológicos llevan poco tiempo, y en su mayoría son inconsistentes respecto al cáncer en humanos, no obstante, se complementan con el empleo de biomarcadores, donde se obtienen resultados en cuanto a la toxicidad cancerígena y no cancerígena más fiables, con menor margen de error. Por el momento, la única recomendación para mitigar su exposición es la divulgación sobre los riesgos del consumo excesivo de alimentos fritos, demasiado tostados o procesados, y seguir una dieta equilibrada y saludable.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Voyer LE, Alvarado C. Maillard reaction. Pathogenic effects. Medicina (B. Aires). 2019;79(2):137-43. Citado en PubMed; PMID: 31048279.

2. Koszucka A, Nowak A, Nowak I, et al. Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Crit Rev Food Sci Nutr. 2020;60(10):1677-92. doi: 10.1080/10408398.2019.

3. Koszucka A, Nowak A. Thermal processing food-related toxicants: A Review. Crit Rev Food Sci Nutr. 2019;59:3579-96. Citado en PubMed; PMID: 30311772.

4. Center for Food Safety and Applied Nutrition. Guidance for Industry: Acrylamide in Foods [Internet]. Maryland: Food and Drug Administration; 2016 [citado 09/02/2021]. Disponible en: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-acrylamide-foods

5. European Food Safety Authority Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on acrylamide in food. EFSA J [Internet]. 2018 [citado 06/02/2021];13(6):4104. Disponible en: http://www.efsa.europa.eu/en/efsajournal/pub/4104

6. Huang M, Jiao J, Wang J, et al. Characterization of acrylamide-induced oxidative stress and cardiovascular toxicity in zebrafish embryos. J. Hazard Mater. 2018;347:451-60. Citado en PubMed; PMID: 29353190.

7. Kacar S, Sahinturk V, Kutlu HM. Effect of acrylamide on BEAS-2B normal human lung cells: Cytotoxic, oxidative, apoptotic and morphometric analysis. Acta Histochem. 2019;121(5):595-603. Citado en PubMed; PMID: 31109687.

8. Zamani E, Shaki F, Abedian Kenari S, et al. Acrylamide induces immunotoxicity through reactive oxygen species production and caspase-dependent apoptosis in mice splenocytes via the mitochondria-dependent signaling pathways. Biomed Pharmacother. 2017;94:523-30. Citado en PubMed; PMID: 28780470.

9. Yamamoto J, Ishihara J, Kotemori A, et al. Validity of Estimated Acrylamide Intake by the Dietary Record Method and Food Frequency Questionnaire in Comparison with a Duplicate Method: A Pilot Study. J Nutr Sci Vitaminol (Tokyo). 2018;64(5):340-6. Citado en PubMed; PMID: 30381624.

10. Kotemori A, Ishihara J, Nakadate M, et al. Validity of a Self-administered Food Frequency Questionnaire for the Estimation of Acrylamide Intake in the Japanese Population: The JPHC FFQ Validation Study. J Epidemiol. 2018;28(12):482-7. Citado en PubMed; PMID: 29806636.

11. Kito K, Ishihara J, Yamamoto J, et al. Variations in the estimated intake of acrylamide from food in the Japanese population. J List Nutr J. 2020;19:17. Citado en PubMed; PMID: 32085713.

12. Commission Regulation (EU) 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Official J the European Union [Internet]. 2017 [citado 10/03/2021];304. Disponible en: https://op.europa.eu/en/publication-detail/-/publication/1f3b45fb-ce6b-11e7-a5d5-01aa75ed71a1/language-en

13. Rowan S, Bejarano E, Taylor A. Mechanistic targeting of advanced glycation end-products in age-related diseases. Biochim Biophys Acta Mol Basis Dis. 2018;1864(12):3631-43. Citado en PubMed; PMID: 30279139.

14. Nowotny K, Schröter D, Schreiner M, et al. Dietary advanced glycation end products and their relevance for human health. Ageing Res Rev. 2018 Nov;47:55-66. doi: 10.1016/j.arr.2018.06.005.

15. Michalak J, Czarnowska-Kujawska M, Gujska E. Acrylamide and Thermal-Processing Indexes in Market-Purchased Food. Int J Environ Res Public Health. 2019 Nov 27;16(23):4724. Citado en PubMed; PMID: 31783483.

16. Goempel K, Tedsen L, Ruenz M, et al. Biomarker monitoring of controlled dietary acrylamide exposure indicates consistent human endogenous background. Arch Toxicol. 2017 Nov;91(11):3551-60. doi: 10.1007/s00204-017-1990-1.

17. Obón-Santacana M, Lujan-Barroso L, Freisling H, et al. Dietary and lifestyle determinants of acrylamide and glycidamide hemoglobin adducts in non-smoking postmenopausal women from the EPIC cohort. Eur J Nutr. 2017 Apr;56(3):1157-68. Citado en PubMed; PMID: 26850269.

18. Sakasai-Sakai A, Takata T, Takino JI, et al. The Relevance of Toxic AGEs (TAGE) Cytotoxicity to NASH Pathogenesis: A Mini-Review. Nutrients. 2019 Feb 22;11(2):E462. Citado en PubMed; PMID: 30813302.

19. Moldogazieva NT, Mokhosoev IM, Mel'nikova TI,et al. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxid Med Cell Longev. 2019 Aug 14;2019:3085756. Citado en PubMed; PMID: 31485289.

20. Ravichandran G, Lakshmanan DK, Raju K, et al. Food advanced glycation end products as potential endocrine disruptors: An emerging threat to contemporary and future generation. Environ Int. 2019 Feb;123:486-500. Citado en PubMed; PMID: 30622074.

21. Lee S, Kim HJ. Dietary Exposure to Acrylamide and Associated Health Risks for the Korean Population. Int J Environ Res Public Health. 2020 Oct 19;17(20):7619. Citado en PubMed; PMID: 33086700.

22. Raldúa D, Casado M, Prats E, et al. Targeting redox metabolism: the perfect storm induced by acrylamide poisoning in the brain. Sci Rep. 2020 Jan 15;10(1):312. Citado en PubMed; PMID: 31941973.

23. Jozinović A, Šarkanj B, Ačkar Đ, et al. Simultaneous Determination of Acrylamide and Hydroxymethylfurfural in Extruded Products by LC-MS/MS Method. Molecules. 2019. May 22;24(10):1971. Citado en PubMed; PMID: 31121914.

24. Bušová M, Bencko V, Veszelits Laktičová K, et al. Risk of exposure to acrylamide. Cent Eur J Public Health. 2020 Oct;28 Suppl:S43-6. Citado en PubMed; PMID: 33069180.

25. Chepelev NL, Gagné R, Maynor T, et al. Transcriptional profiling of male F344 rats suggests the involvement of calcium signaling in the mode of action of acrylamide-induced thyroid cancer. Food Chem Toxicol. 2017 Sep;107(Pt A):186-200. Citado en PubMed; PMID: 28606764.

26. Chepelev NL, Gagné R, Maynor T, et al. Transcriptional profiling of male CD-1 mouse lungs and Harderian glands supports the involvement of calcium signaling in acrylamide-induced tumors. Regul Toxicol Pharmacol. 2018 Jun;95:75-90.Citado en PubMed; PMID: 29475067.

27. Gedika S, Erman Erdemlib M, Gulc M, et al. Hepatoprotective effects of crocin on biochemical and histopathological alterations following acrylamide-induced liver injury in Wistar rats. Biomedicine & Pharmacotherapy. 2017; 95: 764-70. Citado en PubMed; PMID: 28892787.

28. Sun G, Qu S, Wang S, et al. Taurine attenuates acrylamide-induced axonal and myelinated damage through the Akt/GSK3β-dependent pathway. Int J Immunopathol Pharmacol. 2018 Jan-Dec;32. Citado en PubMed; PMID: 30354842.

29. Krishna G. Oral supplements of combined fructo- and xylo-oligosaccharides during perinatal period significantly offsets acrylamide-induced oxidative impairments and neurotoxicity in rats. J Physiol Pharmacol. 2018 Oct;69(5). Citado en PubMed; PMID: 30683831.

30. Mehmet EE, M Arif A, Eyup A, et al. Acrylamide applied during pregnancy causes the neurotoxic effect by lowering BDNF levels in the fetal brain. Neurotoxicology and Teratology. 2018;67:37-43. Citado en PubMed; PMID: 29580927.

31. Hobbs CA, Jeffrey D, Shepard K, et al. Differential genotoxicity of acrylamide in the micronucleus and Pig-a gene mutation assays in F344 rats and B6C3F1 mice. Mutagenesis. 2016;31(6):617-26. Citado en PubMed; PMID: 27338305.

32. Radad K, Al-Shraim M, Al-Emam A, et al. Neurotoxic effects of acrylamide on dopaminergic neurons in primary mesencephalic cell culture. Folia Neuropathol. 2019;57(2):196-204. Citado en PubMed; PMID: 31556578.

33. Kotemori A, Ishihara J, Zha L, et al. Dietary acrylamide intake and risk of breast cancer: The Japan Public Health Center-based Prospective Study. Cancer Sci. 2018 Mar;109(3):843-53. Citado en PubMed; PMID: 29288560.

34. Liu R, Sobue T, Kitamura T, et al. Dietary Acrylamide Intake and Risk of Esophageal, Gastric, and Colorectal Cancer: The Japan Public Health Center-Based Prospective Study. Cancer Epidemiol Biomarkers Prev. 2019 Sep;28(9):1461-68. Citado en PubMed; PMID: 31186264.

35. McCullough ML, Hodge RA, Um CY, et al. Dietary Acrylamide Is Not Associated with Renal Cell Cancer Risk in the CPS-II Nutrition Cohort. Cancer Epidemiol Biomarkers Prev. 2019 Mar;28(3):616-9. Citado en PubMed; PMID: 30420439.

36. Pelucchi C, Rosato V, Bracci PM, et al. Dietary acrylamide and the risk of pancreatic cancer in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol. 2017 Feb 1;28(2):408-14. Citado en PubMed; PMID: 27836886.

37. Kotemori A, Ishihara J, Zha L, et al. Dietary acrylamide intake and the risk of endometrial or ovarian cancers in Japanese women. Cancer Sci. 2018 Oct;109(10):3316-25. Citado en PubMed; PMID: 30063274.

38. Rietjens IM, Dussort P, Günther H, et al. Exposure assessment of process-related contaminants in food by biomarker monitoring. Arch Toxicol. 2018 Jan;92(1):15-40. Citado en PubMed; PMID: 29302712.

39. Zhivagui M, Ng AWT, Ardin M, et al. Experimental and pan-cancer genome analyses reveal widespread contribution of acrylamide exposure to carcinogenesis in humans. Genome Res. 2019 Apr;29(4):521-31. Citado en PubMed; PMID: 30846532.

Descargas

Publicado

17-04-2022

Cómo citar

1.
Rufín-Gómez L Ángel, Delgado-Pérez LG, Méndez-Martínez J. Efectos patogénicos de la acrilamida para la salud. Una revisión. Rev Méd Electrón [Internet]. 17 de abril de 2022 [citado 22 de enero de 2025];44(2):1-15. Disponible en: https://revmedicaelectronica.sld.cu/index.php/rme/article/view/4468

Número

Sección

ARTÍCULOS DE REVISIÓN

Artículos más leídos del mismo autor/a