Cadenas de Markov en la mejora de los flujos de pacientes hospitalarios: un análisis bibliométrico
Palabras clave:
cadenas de Markov, gestión hospitalaria, flujo de pacientes, análisis bibliométrico, procesoResumen
Introducción: La gestión de flujos de pacientes influye en el rendimiento hospitalario. Para su modelación, se implementan las cadenas de Markov que contribuyen a planificar la capacidad, asignar recursos y programar ingresos.
Objetivo: Evaluar la actividad científica relacionada con la aplicación de las cadenas de Markov en la mejora de los flujos de pacientes en instituciones hospitalarias.
Métodos: Se aplicó un estudio bibliométrico de tipo observacional, descriptivo y retrospectivo. Se utilizó la base de datos ScienceDirect. La estrategia se dividió en tres: evolución de la aplicación de las cadenas de Markov en hospitales, específicamente para la gestión, y para la mejora de los flujos de pacientes. Se localizaron 520, 331 y 9 documentos respectivamente.
Resultados: Predominaron los artículos de investigación, los cuales representaron el 87,91 % de la producción científica. El 58,24 % de los artículos se encontraron en el área de la ciencia de la decisión. Un análisis de las revistas evidencia que el 85,71 % se encontró ubicado en el cuartil 1; de ellas, la de mayor producción fue European Journal of Operational Research. Se identificaron cuatro líneas de investigación principales: optimización de recursos, planificación de la capacidad, desarrollo de políticas para la secuenciación de las actividades, y modelación en función de la mejora y toma de decisiones.
Conclusiones: Las investigaciones futuras deben centrarse en el análisis de la colaboración, la productividad en función del país y la generalización en otras bases de datos de impacto internacional.
Descargas
Citas
2. Jabalera M, Pons M, Gómez E, et al. Hacia la excelencia en gestión hospitalaria. Un modelo de gestión estratégica. J Health Qual Res. 2019;34(3):148-53. DOI: 10.1016/j.jhqr.2019.02.005.
3. Sánchez Suárez Y, Marqués León M, Hernández Nariño A, et al. Metodología para el diagnóstico de la gestión de trayectorias de pacientes en hospitales. Reg Cient. 2023;2(2):2023115. DOI: 10.58763/rc2023115.
4. Sánchez Suárez Y, Trujillo García L, Marqués León M, et al. Los indicadores de gestión hospitalarias en tiempos de Covid 19. Visionario Digital. 2021;5(4):58-77. DOI: 10.33262/visionariodigital.v5i4.1901.
5. Manchay Calvay A. Gestión moderna para una administración efectiva. Ñeque. 2022;5(11):143-51. DOI: 10.33996/revistaneque.v5i11.70.
6. Dawoodbhoy FM, Delaney J, Cecula P, et al. AI in patient flow: applications of artificial intelligence to improve patient flow in NHS acute mental health inpatient units. Heliyon. 2021;7(5):e06993. DOI: 10.1016/j.heliyon.2021.e06993.
7. Duarte Forero E, Camacho Oliveros MÁ. Planeación de la capacidad hospitalaria: un enfoque desde el flujo de pacientes con Dinámica de Sistemas. INGE CUC. 2020;16(1):217-33. DOI: 10.17981/ingecuc.16.1.2020.16.
8. Markazi Moghaddam N, Jame SZB, Tofighi E. Evaluating patient flow in the operating theater: An exploratory data analysis of length of stay components. Inform Med Unlocked. 2020;19:100354. DOI: 10.1016/j.imu.2020.100354.
9. Bhattacharjee P, Ray PK. Patient flow modelling and performance analysis of healthcare delivery processes in hospitals: A review and reflections. Comput Ind Eng. 2014;78:299-312. DOI: 10.1016/j.cie.2014.04.016.
10. Pantí-Trejo H, Batún Cutz J, Cool Padilla R, et al. Aspectos básicos en la Inferencia Estadística para Cadenas de Markov en tiempo discreto. Sahuarus. 2022;6(1):30-49: DOI: 10.36788/sah.v6i1.131.
11. Noda T, Lu X, Ishiguro Y, et al. Cost-effective analysis of automated programming optimization in cardiac resynchronization therapy: Holistic Markov modelling. J Cardiol. 2022;79(6):734-9. DOI: 10.1016/j.jjcc.2021.12.016.
12. Yesantharao PS, Lee E, Klifto K, et al. A Markov Analysis of Surgical vs Medical Management of Chronic Migraines. J Am Coll Surg. 2021;233(5):S195. DOI: 10.1016/j.jamcollsurg.2021.07.396.
13. Sarmentero Bon I, Sánchez Suárez Y, Rodríguez Sánchez Y, et al. Bibliometría sobre la cultura organizacional en el sector de la salud, ante la COVID-19. Universidad y Sociedad [Internet]. 2022 [accessed 2023/04/10];14(S6):427-36. Disponible en: https://rus.ucf.edu.cu/index.php/rus/article/download/3474/3418
14. Zetty Arenas C, Jácome Vallejo MA, Morales Quiceno ME, et al. La vigilancia científica como apoyo a la gestión educativa. Un análisis de la formación en Automatización Industrial. Rev Rutas form práct exp. 2020;(10):60-75. DOI: 10.24236/24631388.n.2020.3396.
15. Rismanchian F, Kassani SH, Shavarani SM, et al. A Data-Driven Approach to Support the Understanding and Improvement of Patients’ Journeys: A Case Study Using Electronic Health Records of an Emergency Department. Value Health. 2023;26(1):18-27. DOI: 10.1016/j.jval.2022.04.002.
16. Shakeri M, Haji B, Farrokhvar L. A partially flexible routing strategy for assigning emergency department patients to inpatient wards. Comput Ind Eng. 2023;176:108810. DOI: 10.1016/j.cie.2022.108810.
17. Andersen AR, Nielsen BF, Reinhardt LB, et al. Staff optimization for time-dependent acute patient flow. Eur J Oper Res. 2019;272(1):94-105. DOI: 10.1016/j.ejor.2018.06.015.
18. Andersen AR, Vancroonenburg W, Vanden Berghe G. Strategic room type allocation for nursing wards through Markov chain modeling. Artif Intell Med. 2019;99:101705. DOI: 10.1016/j.artmed.2019.101705.
19. Kato-Lin YC, Padman R. RFID technology-enabled Markov reward process for sequencing care coordination in ambulatory care: A case study. Int J Inf Manage. 2019;48:12-21. DOI: 10.1016/j.ijinfomgt.2019.01.018.
20. Gu W, Fan N, Liao H. Fitting aggregated phase-type distributions to the length-of-stay in intra-hospital patient transfers. Oper Res Health Care. 2021;29:100291. DOI: 10.1016/j.orhc.2021.100291.
21. Zehrouni A, Augusto V, Garaix T, et al. Hospital flood emergency management planning using Markov models and discrete-event simulation. Oper Res Health Care. 2021;30:100310. DOI: 10.1016/j.orhc.2021.100310.
22. Georgiou AC, Thanassoulis E, Papadopoulou A. Using data envelopment analysis in markovian decision making. Eur J Oper Res. 2022;298(1):276-92. DOI: 10.1016/j.ejor.2021.06.050.
23. Sánchez Suárez Y, Marqués León M, Hernández Nariño A, et al. Modelación de los flujos de pacientes de alto riesgo con COVID-19 en Matanzas con enfoque Lean. Rev Méd Electrón [Internet]. 2023 [accessed 2023/04/10];45(4):629-43. Available from: http://scielo.sld.cu/pdf/rme/v45n4/1684-1824-rme-45-04-629.pdf
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La misma permite:
• Copiar y redistribuir el material publicado en cualquier medio o formato.
• Adaptar el contenido.
Esto se realizará bajo los siguientes términos:
• Atribuir los créditos de los autores e indicar si se realizaron cambios, en cuyo caso debe ser de forma razonable.
• Uso no comercial.
• Reconocer la revista donde se publica.
Se mantienen los derechos de autoría de cada artículo, sin restricciones.