Cadenas de Markov en la mejora de los flujos de pacientes hospitalarios: un análisis bibliométrico

Autores/as

Palabras clave:

cadenas de Markov, gestión hospitalaria, flujo de pacientes, análisis bibliométrico, proceso

Resumen

Introducción: La gestión de flujos de pacientes influye en el rendimiento hospitalario. Para su modelación, se implementan las cadenas de Markov que contribuyen a planificar la capacidad, asignar recursos y programar ingresos.

Objetivo: Evaluar la actividad científica relacionada con la aplicación de las cadenas de Markov en la mejora de los flujos de pacientes en instituciones hospitalarias.

Métodos: Se aplicó un estudio bibliométrico de tipo observacional, descriptivo y retrospectivo. Se utilizó la base de datos ScienceDirect. La estrategia se dividió en tres: evolución de la aplicación de las cadenas de Markov en hospitales, específicamente para la gestión, y para la mejora de los flujos de pacientes. Se localizaron 520, 331 y 9 documentos respectivamente.

Resultados: Predominaron los artículos de investigación, los cuales representaron el 87,91 % de la producción científica. El 58,24 % de los artículos se encontraron en el área de la ciencia de la decisión. Un análisis de las revistas evidencia que el 85,71 % se encontró ubicado en el cuartil 1; de ellas, la de mayor producción fue European Journal of Operational Research. Se identificaron cuatro líneas de investigación principales: optimización de recursos, planificación de la capacidad, desarrollo de políticas para la secuenciación de las actividades, y modelación en función de la mejora y toma de decisiones.

Conclusiones: Las investigaciones futuras deben centrarse en el análisis de la colaboración, la productividad en función del país y la generalización en otras bases de datos de impacto internacional.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Flores Arévalo J, Barbarán Mozo HP. Gestión Hospitalaria: una mirada al desarrollo de sus procesos. Ciencia Latina. 2021;5(2):1527-45. DOI: 10.37811/cl_rcm.v5i2.368.

2. Jabalera M, Pons M, Gómez E, et al. Hacia la excelencia en gestión hospitalaria. Un modelo de gestión estratégica. J Health Qual Res. 2019;34(3):148-53. DOI: 10.1016/j.jhqr.2019.02.005.

3. Sánchez Suárez Y, Marqués León M, Hernández Nariño A, et al. Metodología para el diagnóstico de la gestión de trayectorias de pacientes en hospitales. Reg Cient. 2023;2(2):2023115. DOI: 10.58763/rc2023115.

4. Sánchez Suárez Y, Trujillo García L, Marqués León M, et al. Los indicadores de gestión hospitalarias en tiempos de Covid 19. Visionario Digital. 2021;5(4):58-77. DOI: 10.33262/visionariodigital.v5i4.1901.

5. Manchay Calvay A. Gestión moderna para una administración efectiva. Ñeque. 2022;5(11):143-51. DOI: 10.33996/revistaneque.v5i11.70.

6. Dawoodbhoy FM, Delaney J, Cecula P, et al. AI in patient flow: applications of artificial intelligence to improve patient flow in NHS acute mental health inpatient units. Heliyon. 2021;7(5):e06993. DOI: 10.1016/j.heliyon.2021.e06993.

7. Duarte Forero E, Camacho Oliveros MÁ. Planeación de la capacidad hospitalaria: un enfoque desde el flujo de pacientes con Dinámica de Sistemas. INGE CUC. 2020;16(1):217-33. DOI: 10.17981/ingecuc.16.1.2020.16.

8. Markazi Moghaddam N, Jame SZB, Tofighi E. Evaluating patient flow in the operating theater: An exploratory data analysis of length of stay components. Inform Med Unlocked. 2020;19:100354. DOI: 10.1016/j.imu.2020.100354.

9. Bhattacharjee P, Ray PK. Patient flow modelling and performance analysis of healthcare delivery processes in hospitals: A review and reflections. Comput Ind Eng. 2014;78:299-312. DOI: 10.1016/j.cie.2014.04.016.

10. Pantí-Trejo H, Batún Cutz J, Cool Padilla R, et al. Aspectos básicos en la Inferencia Estadística para Cadenas de Markov en tiempo discreto. Sahuarus. 2022;6(1):30-49: DOI: 10.36788/sah.v6i1.131.

11. Noda T, Lu X, Ishiguro Y, et al. Cost-effective analysis of automated programming optimization in cardiac resynchronization therapy: Holistic Markov modelling. J Cardiol. 2022;79(6):734-9. DOI: 10.1016/j.jjcc.2021.12.016.

12. Yesantharao PS, Lee E, Klifto K, et al. A Markov Analysis of Surgical vs Medical Management of Chronic Migraines. J Am Coll Surg. 2021;233(5):S195. DOI: 10.1016/j.jamcollsurg.2021.07.396.

13. Sarmentero Bon I, Sánchez Suárez Y, Rodríguez Sánchez Y, et al. Bibliometría sobre la cultura organizacional en el sector de la salud, ante la COVID-19. Universidad y Sociedad [Internet]. 2022 [accessed 2023/04/10];14(S6):427-36. Disponible en: https://rus.ucf.edu.cu/index.php/rus/article/download/3474/3418

14. Zetty Arenas C, Jácome Vallejo MA, Morales Quiceno ME, et al. La vigilancia científica como apoyo a la gestión educativa. Un análisis de la formación en Automatización Industrial. Rev Rutas form práct exp. 2020;(10):60-75. DOI: 10.24236/24631388.n.2020.3396.

15. Rismanchian F, Kassani SH, Shavarani SM, et al. A Data-Driven Approach to Support the Understanding and Improvement of Patients’ Journeys: A Case Study Using Electronic Health Records of an Emergency Department. Value Health. 2023;26(1):18-27. DOI: 10.1016/j.jval.2022.04.002.

16. Shakeri M, Haji B, Farrokhvar L. A partially flexible routing strategy for assigning emergency department patients to inpatient wards. Comput Ind Eng. 2023;176:108810. DOI: 10.1016/j.cie.2022.108810.

17. Andersen AR, Nielsen BF, Reinhardt LB, et al. Staff optimization for time-dependent acute patient flow. Eur J Oper Res. 2019;272(1):94-105. DOI: 10.1016/j.ejor.2018.06.015.

18. Andersen AR, Vancroonenburg W, Vanden Berghe G. Strategic room type allocation for nursing wards through Markov chain modeling. Artif Intell Med. 2019;99:101705. DOI: 10.1016/j.artmed.2019.101705.

19. Kato-Lin YC, Padman R. RFID technology-enabled Markov reward process for sequencing care coordination in ambulatory care: A case study. Int J Inf Manage. 2019;48:12-21. DOI: 10.1016/j.ijinfomgt.2019.01.018.

20. Gu W, Fan N, Liao H. Fitting aggregated phase-type distributions to the length-of-stay in intra-hospital patient transfers. Oper Res Health Care. 2021;29:100291. DOI: 10.1016/j.orhc.2021.100291.

21. Zehrouni A, Augusto V, Garaix T, et al. Hospital flood emergency management planning using Markov models and discrete-event simulation. Oper Res Health Care. 2021;30:100310. DOI: 10.1016/j.orhc.2021.100310.

22. Georgiou AC, Thanassoulis E, Papadopoulou A. Using data envelopment analysis in markovian decision making. Eur J Oper Res. 2022;298(1):276-92. DOI: 10.1016/j.ejor.2021.06.050.

23. Sánchez Suárez Y, Marqués León M, Hernández Nariño A, et al. Modelación de los flujos de pacientes de alto riesgo con COVID-19 en Matanzas con enfoque Lean. Rev Méd Electrón [Internet]. 2023 [accessed 2023/04/10];45(4):629-43. Available from: http://scielo.sld.cu/pdf/rme/v45n4/1684-1824-rme-45-04-629.pdf

Publicado

03-07-2024

Cómo citar

1.
Sánchez-Suárez Y, Marqués-León M, Sánchez-Castillo V. Cadenas de Markov en la mejora de los flujos de pacientes hospitalarios: un análisis bibliométrico. Rev Méd Electrón [Internet]. 3 de julio de 2024 [citado 23 de enero de 2025];46:e5500. Disponible en: https://revmedicaelectronica.sld.cu/index.php/rme/article/view/5500

Número

Sección

ARTÍCULOS DE INVESTIGACIÓN