Desórdenes del metabolismo glucídico y síndrome metabólico en pacientes de covid-19
Resumen
El síndrome metabólico comprende un conjunto de factores de riesgo cardiovascular asociado a resistencia a la insulina, que propicia la aparición de enfermedad cardiovascular y de diabetes mellitus tipo 2. Su etiología se atribuye a la combinación de factores genéticos y ambientales, asociados al estilo de vida, que favorecen un estado proinflamatorio y protrombótico que empeora el cuadro clínico de los pacientes con covid-19. El objetivo de la revisión consistió en analizar el estado actual del conocimiento científico en las investigaciones sobre la interrelación entre los desórdenes del metabolismo glucídico y el síndrome metabólico, asociados a la condición proinflamatoria exacerbada en pacientes de covid-19. Se hicieron búsquedas en las bases de datos PubMed, SciELO, ClinicalKey y LILACS. Al proceso proinflamatorio generado por malos hábitos alimentarios, la sobrealimentación calórica de alto índice glicémico, y estilos de vida sedentarios, se atribuye un papel relevante en la patogénesis del síndrome metabólico, así como en sus posibles complicaciones en pacientes de covid-19 con comorbilidades asociadas. Es posible reducir la condición inflamatoria del síndrome metabólico mediante modificaciones en el estilo de vida y hábitos alimentarios, que prevengan la obesidad y sus efectos en la resistencia a la insulina, lo cual propicia reducir la gravedad asociada a los procesos inflamatorios inherentes.
Palabras clave
Referencias
Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: theconundrum. Diabetes Res Clin Pract. 2020; 162: 108132. Citado en PubMed; PMID: 32234504.
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. J Am Med Assoc. 2020; 323: 1239-42. Citado en PubMed; PMID: 32091533.
Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease (COVID-19): a model-based analysis. Lancet Infect Dis. 2020; 20(6): 669-77. Citado en PubMed; PMID: 32240634.
Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA. 2020; 323(16):1545-6. Citado en PubMed; PMID: 32167538.
Liu Y, Yan LM, Wan L, et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020; 20(6): 656-7. Citado en PubMed; PMID: 32199493.
Liu K, Fang YY, Deng Y, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020; 133(9): 1025-31. Citado en PubMed; PMID: 32044814.
Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020 May12; 323(18): 1775-6. Citado en PubMed; PMID: 32203977.
Leisegang K, Henkel R, Agarwal A. Obesity and metabolic syndrome associated with systemic inflammation and the impact on the male reproductive system. Am J Reprod Immunol. 2019; 82(5): e13178. Citado en PubMed; PMID: 31373727.
Sherling DH, Perumareddi P, Hennekens CH. Metabolic Syndrome. J Cardiovasc Pharmacol Ther 2017; 22: 365-7. Citado en PubMed; PMID: 28587579.
Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep 2018; 20(2): 12. Citado en PubMed; PMID: 29480368.
Grundy SM. Metabolic syndrome update. Trends in Cardiovascular Medicine. 2016; 26(4): 364-73. Citado en PubMed; PMID: 26654259.
An J, Yoon SR, Lee JH, et al. Importance of Adherence to Personalized Diet Intervention in Obesity Related Metabolic Improvement in Overweight and Obese Korean Adults. Clin Nutr Res. 2019; 8(3): 171-83. Citado en PubMed; PMID: 31384596.
Mazidi M, Pennathur S, Afshinnia F. Link of dietary patterns with metabolic syndrome: analysis of the National Health and Nutrition Examination Survey. Nutr Diabetes. 2017; 7(3): e255. Citado en PubMed; PMID: 28319105.
Li Y, Zhao L, Yu D, et al. Metabolic syndrome prevalence and its risk factors among adults in China: A nationally representative cross-sectional study. PLoS One. 2018; 13(6): e0199293. Citado en PubMed; PMID: 29920555.
Bahari T, Uemura H, Katsuura-Kamano S, et al. Nutrient-derived dietary patterns and their association with metabolic syndrome in a Japanese population. J Epidemiol. 2018; 28(4): 194-201. Citado en PubMed; PMID: 29151477.
Lee YJ, Song S, Song Y. High-carbohydrate diets and food patterns and their associations with metabolic disease in the Korean population. Yonsei Med J. 2018; 59(7): 834-42. Citado en PubMed; PMID:6082982.
Vos MB. Added sugars and cardiovascular disease risk in children: a scientific statement from the American Heart Association. Circulation. 2017; 135(19): e1017-34. Citado en PubMed; PMID: 5408160.
Suliga E, Cieśla E, Rębak D, et al. Relationship Between Sitting Time, Physical Activity, and Metabolic Syndrome Among Adults Depending on Body Mass Index (BMI). Med SciMonit. 2018 Oct 26; 24: 7633-45. Citado en PubMed; PMID: 30361469.
Cardellá Rosales L, Hernández R. Carbohidratos en la dieta humana. En: Cardellá Rosales LL, Hernández Fernández RA, Pita Rodríguez GM. Metabolismo – Nutrición. La Habana: Editorial Ciencias Médicas; 2018. p. 187-8.
Díaz-Martínez X, Petermann F, Leiva AM, et al. Association of physical inactivity with obesity, diabetes, hypertension and metabolic syndrome in the Chilean population. Rev Med Chil. 2018 May; 146(5): 585-95. Citado en PubMed; PMID: 30148922.
Yang TJ, Chiu CH, Tseng MH, et al. The Influence of Pre-Exercise Glucose versus Fructose Ingestion on Subsequent Postprandial Lipemia. Nutrients. 2018 Jan 29; 10(2). Citado en PubMed; PMID: 29382142.
Litman EA, Gortmaker SL, Ebbeling CB, et al. Source of bias in sugar-sweetened beverage research: A systematic review. Public Health Nutr. 2018; 21(12): 2345-50. Citado en PubMed; PMID: PMID: 29576024.
Braunstein CR, Noronha JC, Glenn AJ, et al. A double-blind, randomized controlled, acute feeding equivalence trial of small, catalytic doses of fructose and allulose on postprandial blood glucose metabolism in healthy participants: The Fructose and Allulose Catalytic Effects (FACE) Trial. Nutrients 2018; 10(6):750. Citado en PubMed; PMID: 29890724.
Geidl-Flueck B, Gerber PA. Insights into the Hexose Liver Metabolism-Glucose versus Fructose. Nutrients. 2018; 9(9): 1026. Citado en PubMed; PMID: 28926951.
Pepin A, Stanhope KL, Imbeault P. Are Fruit Juices Healthier Than Sugar-Sweetened Beverages? A Review. Nutrients. 2019 May 2; 11(5). Citado en PubMed; PMID: 31052523.
Connors P. Dietary Guidelines for Americans 2015-2020. J Nutr Educ and Behav [Internet]. 2016 Jul [citado 24/04/2020]; 48(7). Disponible en: https://doi.org/10.1016/j.jneb.2016.04.389
Rosinger A, Herrick K, Gahche J, et al. Sugar-sweetened beverage consumption among U.S. youth, 2011-2014.NCHS Data Brief. 2017(271): 1-8. Citado en PubMed; PMID: 28135184.
Gómez AM. Consumo elevado de fructosa y su posible influencia sobre el metabolismo lipídico. Rev Cubana Aliment Nutr [Internet]. 2012 [citado 24/04/2020]; 22(2): 287-300. Disponible en: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=50835
Lee HJ, Cha JY. Recent insights into the role of ChREBP in intestinal fructose absorption and metabolism.BMB Rep. 2018 Sep; 51(9):429-36. Citado en PubMed; PMID: 30158026.
Hannou S, Haslam D, McKeown N, et al. Fructose metabolism and metabolic disease. J Clin Invest. 2018 Feb 1; 128(2): 545–5. Citado en PubMed; PMID: 29388924.
Siqueira JH. Sugar-Sweetened Soft Drinks and Fructose Consumption Are Associated with Hyperuricemia: Cross-Sectional Analysis from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutrients. 2018 Jul 27; 10(8). Citado in PubMed; PMID: 30060512.
Moulin S, Seematter G, Seyssel K. Fructose use in clinical nutrition: Metabolic effects and potential consequences. Curr Opin Clin Nutr Metab Care.2017; 20: 272-8.Citado in PubMed; PMID: 28383298.
Herder C, Gala T, Carstensen-Kirberg M, et al. Circulating Levels of Interleukin 1-Receptor Antagonist and Risk of Cardiovascular Disease: Meta-Analysis of Six Population-Based Cohorts. Arterioscler Thromb Vasc Biol. 2017; 37(6): 1222-7. Citado in PubMed; PMID: 28428221.
Nier A, Brandt A, Rajcic D, et al. Short-Term Isocaloric Intake of a Fructose-but not Glucose-Rich Diet Affects Bacterial Endotoxin Concentrations and Markers of Metabolic Health in Normal Weight Healthy Subjects. Mol Nutr Food Res. 2019 Mar; 63(6): e1800868. Citado en PubMed; PMID: 30570214.
Della Corte KW, Perrar I, Penczynski KJ, et al. Effect of Dietary Sugar Intake on Biomarkers of Subclinical Inflammation: A Systematic Review and Meta-Analysis of Intervention Studies. Nutrients. 2018 May 12; 10(5). Citado en PubMed; PMID: 29757229.
Tappy L, Morio B, Azzout-Marniche D, et al. French Recommendations for Sugar Intake in Adults: A Novel Approach Chosen by ANSES. Nutrients. 2018 jul 29; 10(8): 989. Citado en PubMed; PMID: 30060614.
Pahk K, Kim EJ, Lee YJ, et al. Characterization of glucose uptake metabolism in visceral fat by 18 F-FDG PET/CT reflects inflammatory status in metabolic syndrome. PLoS One. 2020 Feb 6;15(2): e0228602. Citado en PubMed; PMID: 32027706.
Tappy L. Fructose-containing caloric sweeteners as a cause of obesity and metabolic disorders. J Exp Biol. 2018 Mar 7; 221. Citado en PubMed; PMID: 29514881.
Lee HA, Choi EJ, Park B, et al. The association between metabolic components and markers of inflammatory and endothelial dysfunction in adolescents, based on the Ewha Birth and Growth Cohort Study. PLoS One. 2020 May 20; 15(5): e0233469. Citado en PubMed; PMID: 32433661.
Nier A, Brandt A, Baumann A, et al. Metabolic Abnormalities in Normal Weight Children Are Associated with Increased Visceral Fat Accumulation, Elevated Plasma Endotoxin Levels and a Higher Monosaccharide Intake. Nutrients. 2019 Mar 18; 11(3). Citado en PubMed; PMID: 30889844.
Martínez-Ferrán M, de la Guía-Galipienso F, Sanchis-Gomar F, et al. Metabolic Impacts of Confinement during the COVID-19 Pandemic Due to Modified Diet and Physical Activity Habits. Nutrients. 2020 Jun; 12(6): 1549. Citado en PubMed; PMID: 32466598.
Liu B, Li M, Zhou Z, et al. Can we use interleukin-6 (IL-6) blockade for coronavirus disease (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun. 2020; 102452. Citado en PubMed; PMID: 32291137.
Valenzuela PL, Morales JS, Pareja-Galeano H, et al. Physical strategies to prevent disuse-induced functional decline in the elderly. Ageing Res Rev. 2018; 47: 80-8. Citado en PubMed; PMID: 30031068.
Santos FAAD, Back IC, Giehl MWC, et al. Level of leisure-time physical activity and its association with the prevalence of metabolic syndrome in adults: a population-based study. Rev Bras Epidemiol. 2020; 23: e200070. Citado en PubMed; PMID: 32638850.
Guthold R, Stevens GA, Riley LM, et al. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob Health. 2018; 6(10): e1077-86. Citado en PubMed; PMID: 30193830.
Fu L, Wang B, Yuan T, et al. Clinical characteristics of coronavirus disease; (COVID-19) in China: a systematic review and meta-analysis. J Infect. 2020; 80(6): 656-65. Citado en PubMed; PMID: 32283155.
Stefan N, Birkenfeld AL, Schulze MB, et al. Obesity and impaired metabolic health in patients with COVID-19. Nat Rev Endocrinol. 2020 Jul; 16(7): 341-2. Citado en PubMed; PMID: 32327737.
Enlaces refback
- No hay ningún enlace refback.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.