Neural networks to estimate body weight using height, age and waist, in Peruvian population

Authors

Keywords:

body weight; waist circumference; height; anthropometry; neural networks of computing

Abstract

Introduction: Estimation of body weight is essential in health assessments. Traditional methods can be limited by equipment availability or measurement biases, so the use of models based on artificial intelligence represents a promising alternative.

Objective: To estimate body weight, using age, height, and abdominal circumference using multilayer perceptron neural networks.

Methods: Cross-sectional analytical study carried out in 61,857 individuals from the 2022 and 2023 Demographic and Family Health Survey. Body weight, height, age, and abdominal circumference were analyzed. Multilayer perceptron neural networks and scatter plots with coefficient of determination (R²) were used.

Results: Model training showed relative errors of 0.102 and 0.117 in the Demographic and Family Health Surveys of 2022 and 2023, respectively; in the test they were 0.099 and 0.112. Scatter plots indicated the model accounted for 90% and 89% of body weight variation in 2022 and 2023, respectively (R² of 0.899 and 0.885).

Conclusions: The neural network based on height, age and abdominal circumference is an efficient tool for estimating body weight in the Peruvian population.

Downloads

Download data is not yet available.

References

1. Zhang X, Ha S, Lau HCH, et al. Excess body weight: Novel insights into its roles in obesity comorbidities. Semin Cancer Biol. 2023;92:16-27. DOI: 10.1016/j.semcancer.2023.03.008.

2. Boutari C, Mantzoros CS. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism. 2022;133:155217. DOI: 10.1016/j.metabol.2022.155217.

3. Walpole SC, Prieto-Merino D, Edwards P, et al. The weight of nations: an estimation of adult human biomass. BMC Public Health. 2012;12(1):439. DOI: 10.1186/1471-2458-12-439.

4. Vinueza Veloz AF, Carpio Arias TV, Robalino Valdivieso MP, et al. Estimation of weight based on age in Ecuadorian boys and girls: a validation of the APLS formula. Nutr Hosp. 2020;38(2):345-51. DOI: 10.20960/nh.03410.

5. Shafi I, Farooq MS, De La Torre Díez I, et al. Design and development of smart weight measurement, lateral turning and transfer bedding for unconscious patients in pandemics. Healthcare. 2022;10(11):2174. DOI: 10.3390/healthcare10112174.

6. Kim T-H, Hong Y-S. Prediction of body weight of a person lying on a smart mat in nonrestraint and unconsciousness conditions. Sensors. 2020;20(12):3485. DOI: 10.3390/s20123485.

7. Instituto Nacional de Estadística e Informática. Perú: Encuesta Demográfica y de Salud Familiar - ENDES 2022. Informe [Internet]. Lima: Instituto Nacional de Estadística e Informática; 2023 [citado 12/04/2024]. Disponible en: https://www.gob.pe/institucion/inei/informes-publicaciones/4233597-peru-encuesta-demografica-y-de-salud-familiar-endes-2022

8. Instituto Nacional de Estadística e Informática. Manual de la Antropometrista [Internet]. Lima: Instituto Nacional de Estadística e Informática; 2010 [citado 21/09/2024]. Disponible en: https://proyectos.inei.gob.pe/iinei/srienaho/Descarga/DocumentosMetodologicos/2010-5/ManualdeAntropometrista.pdf

9. Ross R, Neeland IJ, Yamashita S, et al. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat Rev Endocrinol. 2020;16:177-89. DOI: 10.1038/s41574-019-0310-7.

10. Bhattacharya S, Bennet L, Davidson JO, et al. Multi-layer perceptron classification & quantification of neuronal survival in hypoxic-ischemic brain image slices using a novel gradient direction, grey level co-occurrence matrix image training. PLoS One. 2022;17(12):e0278874. DOI: 10.1371/journal.pone.0278874.

11. Li W, Chen H, Guo J, et al. Brain-inspired Multilayer Perceptron with spiking neurons [Internet]. New Orleans: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2022 [citado 12/04/2024]. Disponible en: http://arxiv.org/abs/2203.14679

12. Chai SS, Cheah WL, Goh KL, et al. A multilayer perceptron neural network model to classify hypertension in adolescents using anthropometric measurements: A cross-sectional study in Sarawak, Malaysia. Comput Math Methods Med. 2021. DOI: 10.1155/2021/2794888.

13. Chicco D, Warrens MJ, Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci. 2021;7(e623). DOI: 10.7717/peerj-cs.623.

14. Gob.pe. Plataforma Nacional de Datos Abiertos [Internet]. Lima: Gob.pe; 2023 [citado 20/02/2025]. Disponible en: https://www.datosabiertos.gob.pe/

15. Freitag E, Edgecombe G, Baldwin I, et al. Determination of body weight and height measurement for critically ill patients admitted to the intensive care unit: A quality improvement project. Aust Crit Care. 2010;23(4):197-207. DOI: 10.1016/j.aucc.2010.04.003.

Published

2025-04-09

How to Cite

1.
Guevara-Tirado A. Neural networks to estimate body weight using height, age and waist, in Peruvian population. Rev Méd Electrón [Internet]. 2025 Apr. 9 [cited 2025 Apr. 16];47:e6405. Available from: https://revmedicaelectronica.sld.cu/index.php/rme/article/view/6405

Issue

Section

Short communication