Efectos patogénicos de los productos finales de glicación avanzada en el proceso de envejecimiento-enfermedad
Palabras clave:
productos finales de glicación avanzada, glicotoxinas, envejecimiento prematuro, diabetes mellitus, estrés oxidativo, enfermedades neurodegenerativasResumen
Los productos finales de glicación avanzada —conocidos como productos de la reacción de Maillard—, formados por glicación directa no enzimática de azúcares reductores con grupos amino libres de proteínas, provocan cambios estructurales y funcionales en las mismas, cuya producción endógena es incrementada con la edad, el estrés oxidativo, así como por factores externos, provocando envejecimiento prematuro y enfermedades degenerativas. El objetivo de la revisión fue obtener una visión actualizada de los avances en investigaciones sobre los efectos de productos finales de glicación avanzada y su interrelación con el estrés oxidativo en el proceso de envejecimiento-enfermedad. En la revisión se consideraron los principales artículos más recientes sobre el tema en las bases de datos PubMed, SciELO, ClinicalKey y LILACS. Se evidencian los efectos patogénicos de los productos finales de glicación avanzada que contribuyen al estrés oxidativo y a la inflamación, de forma especial en el envejecimiento prematuro, diabetes, enfermedad cardiovascular y en otras enfermedades neurodegenerativas, como un aspecto preocupante en el tema del envejecimiento poblacional y su enorme costo para la sociedad futura.
Descargas
Citas
2. Sakasai-Sakai A, Takata T, Takino JI, et al. The Relevance of Toxic AGEs (TAGE) Cytotoxicity to NASH Pathogenesis: A Mini-Review. Nutrients. 2019 Feb 22;11(2). Citado en PubMed; PMID: 30813302.
3. Moldogazieva NT, Mokhosoev IM, Mel'nikova TI, et al. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxid Med Cell Longev. 2019 Aug 14;2019:3085756. Citado en PubMed; PMID: 31485289.
4. Ravichandran G, Lakshmanan DK, Raju K, et al. Food advanced glycation end products as potential endocrine disruptors: An emerging threat to contemporary and future generation. Environ Int. 2019 Feb;123:486-500. Citado en PubMed; PMID: 30622074.
5. Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018 Dec 12;10(12):3654-6. Citado en PubMed; PMID: 30540565.
6. Rowan S, Bejarano E, Taylor A. Mechanistic targeting of advanced glycation end-products in age-related diseases. Biochim Biophys Acta Mol Basis Dis. 2018 Dec;1864(12):3631-43. Citado en PubMed; PMID: 30279139.
7. Chaudhuri J, Bains Y, Guha S, et al. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell Metab. 2018 Sep 4;28(3):337-52. Citado en PubMed; PMID: 30184484.
8. Gryszczyńska B, Budzyń M, Begier-Krasińska B, et al. Association between Advanced Glycation End Products, Soluble RAGE Receptor, and Endothelium Dysfunction, Evaluated by Circulating Endothelial Cells and Endothelial Progenitor Cells in Patients with Mild and Resistant Hypertension. Int J Mol Sci. 2019 Aug 13;20(16). pii: E3942. Citado en PubMed; PMID: 31412635.
9. Fishman SL, Sonmez H, Basman C, et al. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med. 2018 Nov 23;24(1):59. Citado en PubMed; PMID: 30470170.
10. Di Meo S, Napolitano G, Venditti P. Physiological and Pathological Role of ROS: Benefits and Limitations of Antioxidant Treatment. Int J Mol Sci. 2019 Sep 27;20(19). Citado en PubMed; PMID: 31569717.
11. Gill V, Kumar V, Singh K, et al. Advanced Glycation End Products (AGEs) May Be a Striking Link Between Modern Diet and Health. Biomolecules. 2019 Dec;9(12):888. Citado en PubMed; PMID: 31861217.
12. Anand Babu K, Sen P, Angayarkanni N. Oxidized LDL, homocysteine, homocysteine thiolactone and advanced glycation end products act as pro-oxidant metabolites inducing cytokine release, macrophage infiltration and pro-angiogenic effect in ARPE-19 cells. PLoS One. 2019 May 14;14(5):e0216899. Citado en PubMed; PMID: 31086404.
13. Babu KR, Tay Y. The Yin-Yang Regulation of Reactive Oxygen Species and MicroRNAs in Cancer. Int J Mol Sci. 2019 Nov;20(21):5335. Citado en PubMed; PMID: 31717786.
14. Paradela B, Bravo SB, Rozados A, et al. Inflammatory effects of in vivo glycated albumin from cardiovascular. Biomedicine & Pharmacotherapy. 2019;113:1008763. Citado en PubMed; PMID: 30875658.
15. Voyer LE, Alvarado C. Maillard reaction. Pathogenic effects. Medicina (B Aires). 2019;79(2):137-43. Citado en PubMed; PMID: 31048279.
16. Della Corte K, Perrar I, Penczynski KJ, et al. Effect of Dietary Sugar Intake on Biomarkers of Subclinical Inflammation: A Systematic Review and Meta-Analysis of Intervention Studies. Nutrients. 2018 May;10(5):606. Citado en PubMed; PMID: 29757229.
17. Gugliucci A. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases. Adv Nutr. 2017 Jan;8(1):54-62. Citado en PubMed; PMID: 28096127.
18. Cao J, Liu Z, Xu Q, et al. Research progress in NADPH oxidase family in cardiovascular diseases. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2019 Nov 28;44(11):1258-67. Citado en PubMed; PMID: 31919321.
19. Ntyonga-Pono MP. COVID-19 infection and oxidative stress: an under-explored approach for prevention and treatment. Pan Afr Med J. 2020;35(Suppl 2):12. Citado en PubMed; PMID: 32528623.
20. Cecchini R. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses. 2020. Citado en PubMed; PMID: 32721799.
21. Yuan T, Yang T, Chen H, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019 Jan; 20: 247-60. Citado en PubMed; PMID: 30384259.
22. Bettiga A, Fiorio F, Di Marco F, et al. The Modern Western Diet Rich in Advanced Glycation End-Products (AGEs): An Overview of Its Impact on Obesity and Early Progression of Renal Pathology. Nutrients. 2019 Jul 30;11(8). Citado en PubMed; PMID: 31366015.
23. Fernando DH, Forbes JM, Angus PW, et al. Development and Progression of Non-Alcoholic Fatty Liver Disease: The Role of Advanced Glycation End Products. Int J Mol Sci. 2019 Oct;20(20):5037. Citado en PubMed; PMID: 31614491.
24. Di Pino A, Urbano F, Scicali R, et al. 1 h Postload Glycemia Is Associated with Low Endogenous Secretory Receptor for Advanced Glycation End Product Levels and Early Markers of Cardiovascular Disease. Cells. 2019 Aug 16;8(8). pii: E910. Citado en PubMed; PMID: 31426413.
25. Rabbani N, Thornalley PJ. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int [Internet]. 2018 [citado 04/02/2021];93:803-13. Disponible en: https://doi.org/10.1016/j.kint.2017.11.034
26. Nowotny K, Schröter D, Schreiner M, et al. Dietary advanced glycation end products and their relevance for human health. Ageing Res Rev. 2018 Nov;47:55-66. Citado en PubMed; PMID: 29969676.
27. Fuller K, Miranda ER, Thyfault JP, et al. Metabolic Derangements Contribute to Reduced sRAGE Isoforms in Subjects with Alzheimer's Disease. Mediators Inflamm [Internet]. 2018 Feb 22 [citado 04/02/2021];2018:2061376. Disponible en: https://doi.org/10.1155/2018/2061376
28. Snelson M, Coughlan MT. Dietary Advanced Glycation End Products: Digestion, Metabolism and Modulation of Gut Microbial Ecology. Nutrients. 2019 Feb;11(2):215. Citado en PubMed; PMID: 30678161.
29. Liu K, Luo M, Wei S. The Bioprotective Effects of Polyphenols on Metabolic Syndrome against Oxidative Stress: Evidences and Perspectives. Oxid Med Cell Longev. 2019;2019:6713194. Citado en PubMed; PMID: 31885810.
30. Snezhkina AV, Kudryavtseva AV, Kardymon OL, et al. ROS Generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev. 2019 Aug;2019:6175804. Citado en PubMed; PMID: 31467634.
31. Ferraz L, Braga A. Association between antioxidant vitamins and oxidative stress among patients with a complete hydatidiform mole. Clinics (São Paulo). 2020;75:e1724. Citado en PubMed; PMID: 32638907.
32. Miyazawa T, Burdeos GC, Itaya M, et al. Vitamin E: Regulatory Redox Interactions. IUBMB Life. 2019 Apr;71(4):430-41. Citado en PubMed; PMID: 30681767.
33. Sotler R, Poljšak B, Dahmane R, et al. Prooxidant activities of antioxidants and their impact on health. Acta Clin Croat. 2019 Dec;58(4):726-36. Citado en PubMed; PMID: 32595258.
34. Cardoso SM. Special Issue: The Antioxidant Capacities of Natural Products. Molecules. 2019 Jan 30;24(3):492. Citado en PubMed; PMID: 30704064.
35. Hjerrild JN, Wobbe A, Stausholm MB, et al. Effects of Long-Term Physical Activity and Diet on Skin Glycation and Achilles Tendon Structure. Nutrients [Internet]. 2019 Jun 22 [citado 04/02/2021];11(6). Disponible en: https://doi.org/10.3390/nu11061409
36. Van der Lugt T, Weseler AR, Gebbink WA, et al. Dietary Advanced Glycation Endproducts Induce an Inflammatory Response in Human Macrophages in Vitro. Nutrients [Internet]. 2018 [citado 04/02/2021];10(12). Disponible en: https://doi.org/10.3390/nu10121868
Publicado
Cómo citar
Número
Sección
Licencia
La misma permite:
• Copiar y redistribuir el material publicado en cualquier medio o formato.
• Adaptar el contenido.
Esto se realizará bajo los siguientes términos:
• Atribuir los créditos de los autores e indicar si se realizaron cambios, en cuyo caso debe ser de forma razonable.
• Uso no comercial.
• Reconocer la revista donde se publica.
Se mantienen los derechos de autoría de cada artículo, sin restricciones.