External validation of the predictive model of mortality in elder people with community-acquired pneumonia.
Keywords:
Key words, mortality, pneumonia, predictive model.Abstract
Introduction: community-acquired pneumonia is the infectious disease leading to higher mortality in developed countries. The diagnosis goes through several moments, clinical symptoms, analytics, and images.
Objective: to perform the external validation of a predictive mathematical model of mortality in patients admitted by serious community-acquired pneumonia.
Method: longitudinal prospective (cohort) study with a group formed with all patients who were admitted to the Emergent Intensive Care Unit in the Military Hospital ¨Dr. Carlos Juan Finlay¨ with the diagnosis of community-acquired pneumonia, from February 2018 to March 2019. The universe was formed by 160 patients and no sample was chosen.
Results: Kappa index K= 1. Hosmer Lemenshow test= 0.650 with a high adjustment. Result of the model with sensibility= 79 %. Specificity= 91 % with (APV) = 80 and (NPV) = 91. RR= 9.1. Area under the curve= 0997. Percentage of correctness in logistic regression of 88.4 %.
Conclusions: The proposed model was a useful tool in the early detection of patients at near-term death risk. It allowed to unite in an only variant the result of others that apparently are not related one to another, making it easier the interpretation of the results, since it reflects the whole and not the individuality.
Downloads
References
2. Sharma S, Sneath E, Cheng A, et al. Community-acquired syndromes causing morbidity and mortality in Australia.Commun Dis Intell Q Rep. 2017;41(1):E49-E57.Citado en PubMed:PMID:28385138.
3. Caggiano S, Ullmann N, De Vitis E, et al. Factors That Negatively Affect the Prognosis of Pediatric Community-Acquired Pneumonia in District Hospital in Tanzania.Int J Mol Sci. 2017 Mar 13;18(3). pii: E623. Citado en PubMed:PMID:28335406 .
4. Upchurch C, Grijalva C, Wunderink R, et al. Community-acquired Pneumonia Visualized on Computed Tomography but Not Chest X-Ray: Pathogens, Severity, and Clinical Outcomes.Chest. 2017; (17)3:1392-2. Citado en PubMed;PMID:28802696
5. Franco J. Community-acquired Pneumonia.Radiol Technol. 2017 Jul;88(6):621-636. Citado en PubMed;PMID:28900048.
6. Mezquía de Pedro N, Soler Morejón C, Tamargo Barbeito T, et al. Aplicación de un índice pronóstico de mortalidad en pacientes con insuficiencia cardiaca aguda.Rev Cubana de Medicina [Internet]. 2016[citado 18/12/2017];55(4):1-10. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75232016000400003
7. Jimenez Guerra S. Modelo Predictivo de Neumonía y Moratalidad en Pacientes Ventilados. [Tesis doctoral]. Matanzas,Cuba: Instituto Superior de Medicina Militar; 2008.
8. García Álvarez P. Aplicación de redes neuronales en la predicción de mortalidad por neumonía. Rev Méd Electrón [Internet].2018 [citado 22/12/2018] ;40(5).Disponible en: http://www.revmedicaelectronica.sld.cu/index.php/rme/article/view/2462/4029
9. Arméstar F, Almirall J, Módol J, et al. Factores pronósticos de la neumonía neumocócica grave. Revista Medica de Truillo[Internet].2017[citado 29/04/2019]; 12(1). Disponible en: http://www.revistas.unitru.edu.pe/index.php/RMT/issue/view/275
10. Cruz Nato S, Freyre Cisneros L. Aplicación de la escala qSOFA en comparación con los criterios de SIRS para decisión de alta temprana en pacientes adultos que presentan neumonía e infección de vías urinarias. Quito,Ecuador: Hospital Eugenio Espejo, Servicio de Emergencia; 2017.Disponible:http://www.dspace.uce.edu.ec/handle/25000/11965
11. Majano Almao K, Briceño Álvarez S. Factores pronósticos de mortalidad en pacientes ancianos hospitalizados por neumonía adquirida en la comunidad.QhaliKay. Rev de Ciencias de la Salud[Internet]. 2018[citado 30/04/2019];2(2): 8. Disponible en: https://doi.org/10.1016/j.jnma.2018.03.008.
12. Ito A, Ishida T, Tokumasu H, et al. Prognostic factors in hospitalized community-acquired pneumonia: a retrospective study of a prospective observational cohort. BMC Pulm Med[Internet]. 2017[citado 31/07/2017];17(1):78. Disponible en: https://bmcpulmmed.biomedcentral.com/articles/10.1186/s12890-017-0424-4
13 Noguchi S, Yatera K, Kawanami T, et al. Pneumonia Severity Assessment Tools for Predicting Mortality in Patients with Healthcare-Associated Pneumonia: A Systematic Review and Meta-Analysis. Respiration. 2017 Citado en PubMed;PMID:2844900.
14. Méndez Fandiño Y, Caicedo Ochoa E, Alexandra Amaya N, et al. Evaluación de índices CURB-65, Quick-SOFA e índice de Charlson en la predicción de mortalidad. Revista Colombiana de Neumología[Internet].2018 [Citado 20/04/2019];30(1). Disponible en: http://dx.doi.org/10.30789/rcneumologia.v30.n1.2018.297
15. Saldías Peñafiel F, Uribe Monasterioa J, Gassmann Poniachika J, Predicción de eventos adversos en NAC hospitalizada. Rev Med Chile[Internet]. 2017[citado 28/04/ 2019] 28; 145: 694-702. Disponible en: doi:10.4067/s0034-98872017000600694
Published
How to Cite
Issue
Section
License
All content published in this journal is Open Access, distributed under the terms of the CC BY-NC 4.0 License.
It allows:
- Copy and redistribute published material in any medium or format.
- Adapt the content.
This will be done under the following terms:
- Attribute the authors' credits and indicate whether changes were made, in which case it must be in a reasonable way.
- Non-commercial use.
- Recognize the journal where it is published.
The copyrights of each article are maintained, without restrictions.