Application of a Cuban mortality-predictive model in seriously-ill patients with Covid-19 in Lombardy, Italy

Authors

Keywords:

mortality, COVID-19, predictive model

Abstract

Introduction: COVID-19 pneumonia is an infectious disease that has revolutionized the world in the last months. The diagnosis goes thought several moments: clinical features, blood analytic and images. Death risk stratification is very important to optimize resources.

Objective: to validate the Cuban mathematic predictive model of mortality in patients admitted due to COVID-19.

Materials and methods: cohort study with 191 seriously-ill patients who were admitted to Maggiore di Crema Hospital, Cremona, Lombardy region, Italy, in the period April-May 2020. The universe were 191 patients and no sample was chosen. The variables were: age; patient’s status; plasma creatinine levels; respiratory rate; heart rate; arterial pressure; blood oxygen and carbon dioxide levels; values of sodium and hemoglobin.

Results: 22 % of mortality in seriously-ill and critical patients, with average age in Group 1: 59 years, in Group 2: 73 years; t-Student = 0.00. Hosmer-Lemenshow test (0.766) with high adjustment. Sensitivity= 93 %. Area below the curve=0.957. Success percentage in logistic regression of 86.4 % and 91.2 % in the neuronal net. Model media per groups: Group 1= 4 458; Group 2= 2 911, t-Student = 0.00.

Conclusions: the model showed to be very useful in the flow chart of patients attended with COVID-19. It allowed to early detect the patients at high death risk five days from admission and discriminating those who were not at risk, in a way that they could be treated in minimal care units.

Downloads

Download data is not yet available.

References

1. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 in patients in Wuhan. J Allergy Clin Immunol. 2020 Jul; 146(1): 110-8. Citado en PubMed; PMID: 32294485.
2. Jekarl DW, Lee S, Kim M, et al. Procalcitonin as a prognostic marker for sepsis based on SEPSIS-3. J Clin Lab Anal. 2019 Nov; 33(9): e22996. Citado en PubMed; PMID: 31420921.
3. Ochoa Sangrador C, Garmendia Leiza JR, Pérez Boillos MJ, et al. Impacto de la COVID-19 en la mortalidad de la comunidad autónoma de Castilla y León. Gac Sanit [Internet]. 2020 [citado 12 /06/2020]; 34. Disponible en: https://www.sciencedirect.com/science/article/pii/S0213911120300923?via%3Dihub.
4. Sánchez-Álvarez J, Pérez Fontán M, Jiménez Martín C, et al. Situación de la infección por SARS-CoV-2 en pacientes en tratamiento renal sustitutivo. Informe del Registro COVID-19 de la Sociedad Española de Nefrología. Nefrología [Internet] 2020 [citado 12/06/2020]; 40(3):272-8. Disponible en: https://doi.org/10.1016/j.nefro.2020.04.002.
5. Pallarés Carratalá V, Górriz-Zambrano C. Morillas Ariño C, et al. COVID-19 y enfermedad cardiovascular y renal: ¿Dónde estamos? ¿Hacia dónde vamos? Medicina de Familia. Semergen [Internet]. 2020 [citado 23/06/2020]; 46(1): 78-87. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1138359320301441?via%3Dihub.
6. Medeiros Figueiredo A, Daponte-Codina A, Moreira Marculino D, et al. Factores asociados a la incidencia y la mortalidad por COVID-19 en las comunidades autónomas. Gac Sanit [Internet]. 2020 [citado 28/06/2020]. Disponible en: https://www.sciencedirect.com/science/article/pii/S0213911120301242?via%3Dihub.
7. Epidemiology Working Group for NCIP Epidemic Response. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2020; 41(2): 145-51. Citado en PubMed; PMID: 32064853.
8. García Álvarez PJ, García Albero ÁP, Santana Álvarez J. Modelo matemático predictivo de mortalidad por neumonía adquirida en la comunidad. Arch Méd Camagüey [Internet]. 2018 [citado 28/06/2020]; 22(2): [aprox. 10 p.]. Disponible en: http://www.revistaamc.sld.cu/index.php/amc/article/view/5446.
9. Rodríguez Y, Novelli L, Rojas M, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020 Nov; 114: 102506. Citado en PubMed; PMID: 32563547.
10. Zhang L, Yan X, Fan Q, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020 Jun; 18(6): 1324-9. Citado en PubMed; PMID: 32306492.
11. Perrotta F, Corbi G, Mazzeo G, et al. COVID-19 and the elderly: insights into pathogenesis and clinical decision-making. Aging Clin Exp Res [Internet]. 2020 [citado 28/06/2020]; 32: 1599-1608. Disponible en: https://doi.org/10.1007/s40520-020-01631-y.
12. Wang L, He W, Yu X, et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020 Jun; 80(6): 639-45. Citado en PubMed; PMID: 32240670.
13. Kang S, Peng W, Zhu Y, et al. Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment. Int J Antimicrob Agents. 2020 May; 55(5): 105950. Citado en PubMed; PMID: 32234465.
14. Du RH, Liang LR, Yang CQ, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J. 2020 May 7; 55(5): 2000524. doi: 10.1183/13993003.00524-2020. Errata en: Eur Respir J. 2020 Sep 24;56(3). Citado en PubMed; PMID: 32269088.
15. Melin P, Monica JC, Sánchez D, et al. Multiple Ensemble Neural Network Models with Fuzzy Response Aggregation for Predicting COVID-19 Time Series: The Case of Mexico. Healthcare (Basel). 2020 Jun 19; 8(2): 181. Citado en PubMed; PMID: 32575622.
16. García Álvarez PJ. Aplicación de redes neuronales en la predicción de mortalidad por neumonía. Rev Médica Electrón [Internet]. 2018 [citado 28/06/2020]; 40(5). Disponible en: http://www.revmedicaelectronica.sld.cu/index.php/rme/article/view/2462.
17. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020 May; 46(5): 846-8. doi: 10.1007/s00134-020-05991-x. Errata en: Intensive Care Med. 2020 Apr 6. Citado en PubMed; PMID: 32125452.
18. Boukhris M, Hillani A, Moroni F, et al. Cardiovascular Implications of the COVID-19 Pandemic: A Global Perspective. Can J Cardiol. 2020 Jul; 36(7): 1068-80. Citado en PubMed; PMID: 32425328.

Published

2021-03-10

How to Cite

1.
García Álvarez PJ, Morejón Ramos L, Grasso Leyva F. Application of a Cuban mortality-predictive model in seriously-ill patients with Covid-19 in Lombardy, Italy. Rev Méd Electrón [Internet]. 2021 Mar. 10 [cited 2025 Jan. 23];43(2):325-38. Available from: https://revmedicaelectronica.sld.cu/index.php/rme/article/view/3958

Issue

Section

Research article

Most read articles by the same author(s)