Aging and sarcopenic obesity: an update
Keywords:
adipose tissue, diet, elderly, exercise, fragility, skeletal muscleAbstract
The combination of obesity and sarcopenia as a multidimensional syndrome will increase if it is considered that aging is inevitable and that obesity is unlikely to decrease significantly in the near future. Adults over 65 years of age are increasing worldwide and will represent 20% of the population in 2030; half of them will suffer from obesity. Sarcopenic obesity is strongly associated with frailty, cardiometabolic dysfunction, physical disability, and mortality. Therefore, increasing efforts have been made to identify effective strategies capable of promoting healthy aging and curbing the obesity pandemic. Among them, lifestyle interventions consisting of diet and exercise protocols have been widely explored. A review of the last five years is presented in the current study, performed in PubMed, Cochrane and Crossref databases.
Downloads
References
2. Colleluori G, Villareal DT. Aging, obesity, sarcopenia and the effect of diet and exercise intervention. Exp Gerontol. 2021;155:111561. DOI: 10.1016/j.exger.2021.111561.
3. Hong SH, Choi KM. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int J Mol Sci. 2020;21(2):494. DOI: 10.3390/ijms21020494.
4. Okamura T, Hamaguchi M, Bamba R, et al. Brazilian green propolis improves gut microbiota dysbiosis and protects against sarcopenic obesity. J Cachexia Sarcopenia Muscle. 2022;13(6):3028-47. DOI: 10.1002/jcsm.13076.
5. Nunan E, Wright CL, Semola OA, et al. Obesity as a premature aging phenotype - implications for sarcopenic obesity. Geroscience. 2022;44(3):1393-405. DOI: 10.1007/s11357-022-00567-7.
6. Cai Y, Song W, Li J, et al. The landscape of aging. Sci China Life Sci. 2022;65(12):2354-454. DOI: 10.1007/s11427-022-2161-3.
7. Calcinotto A, Kohli J, Zagato E, et al. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev. 2019;99(2):1047-78. DOI: 10.1152/physrev.00020.2018.
8. Nyberg L, Wåhlin A. The many facets of brain aging. Elife. 2020;9:e56640. DOI: 10.7554/eLife.56640.
9. Blinkouskaya Y, Caçoilo A, Gollamudi T, et al. Brain aging mechanisms with mechanical manifestations. Mech Ageing Dev. 2021;200:111575. DOI: 10.1016/j.mad.2021.111575.
10. Schmeer C, Kretz A, Wengerodt D, et al. Dissecting Aging and Senescence-Current Concepts and Open Lessons. Cells. 2019;8(11):1446. DOI: 10.3390/cells8111446.
11. Uyar B, Palmer D, Kowald A, et al. Single-cell analyses of aging, inflammation and senescence. Ageing Res Rev. 2020;64:101156. DOI: 10.1016/j.arr.2020.101156.
12. Elyahu Y, Hekselman I, Eizenberg-Magar I, et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci Adv. 2019;5(8):eaaw8330. DOI: 10.1126/sciadv.aaw8330.
13. Thompson PJ, Shah A, Ntranos V, et al. Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes. Cell Metab. 2019;29(5):1045-60. DOI: 10.1016/j.cmet.2019.01.021.
14. Kiss T, Nyúl-Tóth Á, Balasubramanian P, et al. Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain. Geroscience. 2020;42(2):429-44. DOI: 10.1007/s11357-020-00177-1.
15. Angelidis I, Simon LM, Fernandez IE, et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun. 2019;10(1):963. DOI: 10.1038/s41467-019-08831-9.
16. Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26(6):842-4. DOI: 10.1038/s41591-020-0901-9.
17. Solé-Boldo L, Raddatz G, Schütz S, et al. Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun Biol. 2020;3(1):188. DOI: 10.1038/s42003-020-0922-4.
18. Hernando-Herraez I, Evano B, Stubbs T, et al. Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nat Commun. 2019;10(1):4361. DOI: 10.1038/s41467-019-12293-4.
19. Holanda N, Crispim N, Carlos I, et al. Musculoskeletal effects of obesity and bariatric surgery - a narrative review. Arch Endocrinol Metab. 2022;66(5):621-32. DOI: 10.20945/2359-3997000000551.
20. Semenova EA, Pranckevičienė E, Bondareva EA, et al. Identification and Characterization of Genomic Predictors of Sarcopenia and Sarcopenic Obesity Using UK Biobank Data. Nutrients. 2023;15(3):758. DOI: 10.3390/nu15030758.
21. Rhee EJ. The Influence of Obesity and Metabolic Health on Vascular Health. Endocrinol Metab (Seoul). 2022;37(1):1-8. DOI: 10.3803/EnM.2022.101.
22. Yakabe M, Hosoi T, Akishita M, et al. Updated concept of sarcopenia based on muscle-bone relationship. J Bone Miner Metab. 2020;38(1):7-13. DOI: 10.1007/s00774-019-01048-2.
23. Wei S, Nguyen TT, Zhang Y, et al. Sarcopenic obesity: epidemiology, pathophysiology, cardiovascular disease, mortality, and management. Front Endocrinol (Lausanne). 2023;14:1185221. DOI: 10.3389/fendo.2023.1185221.
24. Salles J, Chanet A, Guillet C, et al. Vitamin D status modulates mitochondrial oxidative capacities in skeletal muscle: role in sarcopenia. Commun Biol. 2022;5(1):1288. DOI: 10.1038/s42003-022-04246-3.
25. Jin J, Ma Y, Tong X, et al. Metformin inhibits testosterone-induced endoplasmic reticulum stress in ovarian granulosa cells via inactivation of p38 MAPK. Hum Reprod. 2020;35(5):1145-58. DOI: 10.1093/humrep/deaa077.
26. Liu Z, Moore R, Gao Y, et al. Comparison of Phytochemical Profiles of Wild and Cultivated American Ginseng Using Metabolomics by Ultra-High Performance Liquid Chromatography-High-Resolution Mass Spectrometry. Molecules. 2022;28(1):9. DOI: 10.3390/molecules28010009.
27. Davis MP, Panikkar R. Sarcopenia associated with chemotherapy and targeted agents for cancer therapy. Ann Palliat Med. 2019;8(1):86-101. DOI: 10.21037/apm.2018.08.02.
28. Ren Q, Chen S, Chen X, et al. An Effective Glucagon-Like Peptide-1 Receptor Agonists, Semaglutide, Improves Sarcopenic Obesity in Obese Mice by Modulating Skeletal Muscle Metabolism. Drug Des Devel Ther. 2022;16:3723-35. DOI: 10.2147/DDDT.S381546.
29. Cai Z, Liu D, Yang Y, et al. The role and therapeutic potential of stem cells in skeletal muscle in sarcopenia. Stem Cell Res Ther. 2022;13(1):28. DOI: 10.1186/s13287-022-02706-5.
30. Khadra D, Itani L, Tannir H, et al. Association between sarcopenic obesity and higher risk of type 2 diabetes in adults: A systematic review and meta-analysis. World J Diabetes. 2019;10(5):311-23. DOI: 10.4239/wjd.v10.i5.311.
Downloads
Published
How to Cite
Issue
Section
License
All content published in this journal is Open Access, distributed under the terms of the CC BY-NC 4.0 License.
It allows:
- Copy and redistribute published material in any medium or format.
- Adapt the content.
This will be done under the following terms:
- Attribute the authors' credits and indicate whether changes were made, in which case it must be in a reasonable way.
- Non-commercial use.
- Recognize the journal where it is published.
The copyrights of each article are maintained, without restrictions.