El envejecimiento y la obesidad sarcopénica: una actualización

Autores/as

Palabras clave:

tejido adiposo, dieta, anciano, ejercicio, fragilidad, músculo esquelético

Resumen

La combinación de la obesidad y la sarcopenia como un síndrome multidimensional irá en aumento si se considera que el envejecimiento es inevitable y que es poco probable que la obesidad disminuya significativamente en un futuro próximo. Los adultos mayores de 65 años están aumentando en todo el mundo y representarán el 20 % de la población en 2030; la mitad de ellos sufrirá de obesidad. La obesidad sarcopénica está fuertemente asociada con fragilidad, disfunción cardiometabólica, discapacidad física y mortalidad. Por lo tanto, se han realizado cada vez más esfuerzos para identificar estrategias efectivas capaces de promover un envejecimiento saludable y frenar la pandemia de obesidad. Entre ellas, se han explorado de manera considerable las intervenciones en el estilo de vida, que consisten en protocolos de dieta y ejercicio. En el presente estudio se presenta una revisión de los últimos cinco años, realizada en las bases de datos PubMed, Cochrane y Crossref.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Britto Ebert Falcón-Guerrero, Universidad Latinoamericana CIMA. Tacna

Profesor Facultad de Odontología

Citas

1. Wang M, Tan Y, Shi Y, et al. Diabetes and Sarcopenic Obesity: Pathogenesis, Diagnosis, and Treatments. Front Endocrinol (Lausanne). 2020;11. DOI: 10.3389/fendo.2020.00568.

2. Colleluori G, Villareal DT. Aging, obesity, sarcopenia and the effect of diet and exercise intervention. Exp Gerontol. 2021;155:111561. DOI: 10.1016/j.exger.2021.111561.

3. Hong SH, Choi KM. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int J Mol Sci. 2020;21(2):494. DOI: 10.3390/ijms21020494.

4. Okamura T, Hamaguchi M, Bamba R, et al. Brazilian green propolis improves gut microbiota dysbiosis and protects against sarcopenic obesity. J Cachexia Sarcopenia Muscle. 2022;13(6):3028-47. DOI: 10.1002/jcsm.13076.

5. Nunan E, Wright CL, Semola OA, et al. Obesity as a premature aging phenotype - implications for sarcopenic obesity. Geroscience. 2022;44(3):1393-405. DOI: 10.1007/s11357-022-00567-7.

6. Cai Y, Song W, Li J, et al. The landscape of aging. Sci China Life Sci. 2022;65(12):2354-454. DOI: 10.1007/s11427-022-2161-3.

7. Calcinotto A, Kohli J, Zagato E, et al. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev. 2019;99(2):1047-78. DOI: 10.1152/physrev.00020.2018.

8. Nyberg L, Wåhlin A. The many facets of brain aging. Elife. 2020;9:e56640. DOI: 10.7554/eLife.56640.

9. Blinkouskaya Y, Caçoilo A, Gollamudi T, et al. Brain aging mechanisms with mechanical manifestations. Mech Ageing Dev. 2021;200:111575. DOI: 10.1016/j.mad.2021.111575.

10. Schmeer C, Kretz A, Wengerodt D, et al. Dissecting Aging and Senescence-Current Concepts and Open Lessons. Cells. 2019;8(11):1446. DOI: 10.3390/cells8111446.

11. Uyar B, Palmer D, Kowald A, et al. Single-cell analyses of aging, inflammation and senescence. Ageing Res Rev. 2020;64:101156. DOI: 10.1016/j.arr.2020.101156.

12. Elyahu Y, Hekselman I, Eizenberg-Magar I, et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci Adv. 2019;5(8):eaaw8330. DOI: 10.1126/sciadv.aaw8330.

13. Thompson PJ, Shah A, Ntranos V, et al. Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes. Cell Metab. 2019;29(5):1045-60. DOI: 10.1016/j.cmet.2019.01.021.

14. Kiss T, Nyúl-Tóth Á, Balasubramanian P, et al. Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain. Geroscience. 2020;42(2):429-44. DOI: 10.1007/s11357-020-00177-1.

15. Angelidis I, Simon LM, Fernandez IE, et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun. 2019;10(1):963. DOI: 10.1038/s41467-019-08831-9.

16. Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26(6):842-4. DOI: 10.1038/s41591-020-0901-9.

17. Solé-Boldo L, Raddatz G, Schütz S, et al. Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun Biol. 2020;3(1):188. DOI: 10.1038/s42003-020-0922-4.

18. Hernando-Herraez I, Evano B, Stubbs T, et al. Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nat Commun. 2019;10(1):4361. DOI: 10.1038/s41467-019-12293-4.

19. Holanda N, Crispim N, Carlos I, et al. Musculoskeletal effects of obesity and bariatric surgery - a narrative review. Arch Endocrinol Metab. 2022;66(5):621-32. DOI: 10.20945/2359-3997000000551.

20. Semenova EA, Pranckevičienė E, Bondareva EA, et al. Identification and Characterization of Genomic Predictors of Sarcopenia and Sarcopenic Obesity Using UK Biobank Data. Nutrients. 2023;15(3):758. DOI: 10.3390/nu15030758.

21. Rhee EJ. The Influence of Obesity and Metabolic Health on Vascular Health. Endocrinol Metab (Seoul). 2022;37(1):1-8. DOI: 10.3803/EnM.2022.101.

22. Yakabe M, Hosoi T, Akishita M, et al. Updated concept of sarcopenia based on muscle-bone relationship. J Bone Miner Metab. 2020;38(1):7-13. DOI: 10.1007/s00774-019-01048-2.

23. Wei S, Nguyen TT, Zhang Y, et al. Sarcopenic obesity: epidemiology, pathophysiology, cardiovascular disease, mortality, and management. Front Endocrinol (Lausanne). 2023;14:1185221. DOI: 10.3389/fendo.2023.1185221.

24. Salles J, Chanet A, Guillet C, et al. Vitamin D status modulates mitochondrial oxidative capacities in skeletal muscle: role in sarcopenia. Commun Biol. 2022;5(1):1288. DOI: 10.1038/s42003-022-04246-3.

25. Jin J, Ma Y, Tong X, et al. Metformin inhibits testosterone-induced endoplasmic reticulum stress in ovarian granulosa cells via inactivation of p38 MAPK. Hum Reprod. 2020;35(5):1145-58. DOI: 10.1093/humrep/deaa077.

26. Liu Z, Moore R, Gao Y, et al. Comparison of Phytochemical Profiles of Wild and Cultivated American Ginseng Using Metabolomics by Ultra-High Performance Liquid Chromatography-High-Resolution Mass Spectrometry. Molecules. 2022;28(1):9. DOI: 10.3390/molecules28010009.

27. Davis MP, Panikkar R. Sarcopenia associated with chemotherapy and targeted agents for cancer therapy. Ann Palliat Med. 2019;8(1):86-101. DOI: 10.21037/apm.2018.08.02.

28. Ren Q, Chen S, Chen X, et al. An Effective Glucagon-Like Peptide-1 Receptor Agonists, Semaglutide, Improves Sarcopenic Obesity in Obese Mice by Modulating Skeletal Muscle Metabolism. Drug Des Devel Ther. 2022;16:3723-35. DOI: 10.2147/DDDT.S381546.

29. Cai Z, Liu D, Yang Y, et al. The role and therapeutic potential of stem cells in skeletal muscle in sarcopenia. Stem Cell Res Ther. 2022;13(1):28. DOI: 10.1186/s13287-022-02706-5.

30. Khadra D, Itani L, Tannir H, et al. Association between sarcopenic obesity and higher risk of type 2 diabetes in adults: A systematic review and meta-analysis. World J Diabetes. 2019;10(5):311-23. DOI: 10.4239/wjd.v10.i5.311.

Descargas

Publicado

17-07-2024

Cómo citar

1.
Falcón-Guerrero BE, Falcón-Guerrero RW. El envejecimiento y la obesidad sarcopénica: una actualización. Rev Méd Electrón [Internet]. 17 de julio de 2024 [citado 23 de enero de 2025];46:e5414. Disponible en: https://revmedicaelectronica.sld.cu/index.php/rme/article/view/5414

Número

Sección

ARTÍCULOS DE REVISIÓN

Artículos más leídos del mismo autor/a