La antropometría aplicada en el ultrasonido como herramienta para la medición de la composición corporal

Autores/as

Palabras clave:

antropometría, composición corporal, ultrasonido

Resumen

La caracterización antropométrica de los individuos aporta información para la evaluación de su estado de salud, en particular la composición corporal —aspecto esencial en la valoración nutricional y funcional—, donde el ultrasonido adquiere cada vez más valor en el análisis de estos componentes. El propósito de esta investigación es sistematizar los referentes sobre el estudio de la composición corporal a través de las mediciones del tejido adiposo subcutáneo por ultrasonido. Se realizó una investigación documental cuyo objeto de estudio fueron los artículos publicados en las bases de datos SciELO, EBSCO y PubMed, entre enero de 2020 y octubre de 2022. Se encontró que existen diferentes centros investigativos que han desarrollado estudios sobre la composición corporal medida a través de ultrasonido, mayormente en la última década. Las principales escuelas se encuentran en Francia, Estados Unidos, Brasil y Austria. Las aplicaciones de estos estudios se encuentran en la nutrición, el deporte, la salud en general, y poblaciones particulares como niños, adolescentes, militares e individuos con sobrepeso u obesidad. Por tanto, se considera que el ultrasonido es un método indirecto de medición de la composición corporal, que ha sido empleado para medir la estructura del tejido y ha demostrado ser una técnica precisa para medir el grosor de la grasa subcutánea.
 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sandra Bahr-Ulloa, Universidad de Ciencias Médicas de Matanzas. Matanzas

Doctora en Medicina Profesora Instructora

Citas

1. Pineau JC. Prediction of percent total body fat in adult men using ultrasonic and anthropometric measurements versus DXA. Gazzetta Medica Italiana Arch Sci Med [Internet]. En prensa 2020 [citado 08/12/2022]. Disponible en: https://hal.archives-ouvertes.fr/hal-02995427

2. Holmes CJ, Racette SB. The Utility of Body Composition Assessment in Nutrition and Clinical Practice: An Overview of Current Methodology. Nutrients. 2021;13(8):2493. DOI: 10.3390/nu13082493.

3. Ripka WL, Ulbricht L, Gewehr PM. Body composition and prediction equations using skinfold thickness for body fat percentage in Southern Brazilian adolescents. PLOS One [Internet]. 2017 [citado 08/12/2022];12(9):e0184854. Disponible en: https://doi.org/10.1371/journal.pone.0184854

4. Krueger E, Scheeren EM, Pacheco Rinaldin CD, et al. Impact of skinfold thickness on wavelet-based mechanomyographic signal. Facta Univ Ser Mech Eng [Internet]. 2018 [citado 08/12/2022];16(3):359-68. Disponible en: https://doi.org/10.22190/FUME170602001K

5. El-Koofy N, Soliman H, Elbarbary MA, et al. Use of anthropometry versus ultrasound for the assessment of body fat and comorbidities in children with obesity. J Pediatr Gastroenterol Nutr. 2020;71(6):782-8. DOI: 10.1097/MPG.0000000000002884.

6. Hoffmann J, Thiele J, Kwast S, et al. Measurement of subcutaneous fat tissue: reliability and comparison of caliper and ultrasound via systematic body mapping. Sci Rep [Internet]. 2022 [citado 08/12/2022];12(1):15798. Disponible en: https://www.nature.com/articles/s41598-022-19937-4

7. Novais RLR, Silveira ALO, Diniz IA, et al. Ultrasound as a method for evaluation of body composition: a systematic review. Res Soc Dev. 2022;11(2):e56111226221. DOI: 10.33448/rsd-v11i2.26221.

8. Dexter S, Christison K, Dumke C. Validity of ultrasound for body composition measurement. Int J Exerc Sci [Internet]. 2022 [citado 14/01/2023];8(10). Disponible en: https://digitalcommons.wku.edu/ijesab/vol8/iss10/1

9. Prasetyo M, Andreas S, Sunardi D, et al. Ultrasonographic measurement of abdominal and gluteal-femoral fat thickness as a predictor for android/gynoid ratio. Eur J Radiol. 2022;154:110387. DOI: 10.1016/j.ejrad.2022.110387.

10. Kelso A, Müller W, Fürhapter-Rieger A, et al. High inter-observer reliability in standardized ultrasound measurements of subcutaneous adipose tissue in children aged three to six years. BMC Pediatrics. 2020;20(145). DOI: 10.1186/s12887-020-02044-6.

11. Wagner DR, Teramoto M. Interrater reliability of novice examiners using A-mode ultrasound and skinfolds to measure subcutaneous body fat. PLoS One. 2020;15(12):e0244019. DOI: 10.1371/journal.pone.0244019.

12. Pineau JC, Bouslah M. Prediction of body fat in male athletes from ultrasound and anthropometric measurements versus DXA. J Sports Med Phys Fitness [Internet]. 2020 [citado 14/01/2023];60(2):251-6. Disponible en: https://hal.archives-ouvertes.fr/hal-02372119

13. Kang S, Park J-H, Seo M-W, et al. Validity of the Portable Ultrasound BodyMetrix™ BX-2000 for Measuring Body Fat Percentage. Sustainability. 2020;12(21):8786. DOI: 10.3390/su12218786.

14. Elsey AM, Lowe AK, Cornell AN, et al. Comparison of the Three-Site and Seven-Site Measurements in Female Collegiate Athletes Using BodyMetrix™. Int J Exerc Sci [Internet]. 2021 [citado 14/01/2023];14(4):230-8. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136548/

15. Geneen LJ, Kinsella J, Zanotto T, et al. Validity and reliability of high-resolution ultrasound imaging for the assessment of regional body composition in stage 5 chronic kidney disease patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Int. 2022;42(1):57-64. DOI: 10.1177/08968608211002384.

16. Wagner DR, Teramoto M, Judd T, et al. Comparison of A-mode and B-mode ultrasound for measurement of subcutaneous fat. Ultrasound Med Biol. 2020;46(4):944-51. DOI: 10.1016/j.ultrasmedbio.2019.11.018.

17. Wagner D. Ultrasound as a Tool to Assess Body Fat. J Obes. 2013;2013:280713. DOI: 10.1155/2013/280713.

18. Ripka WL, Ulbricht L, Menghin L, et al. Portable A-Mode Ultrasound for Body Composition Assessment in Adolescents. J Ultrasound Med. 2016;35(4):755-60. DOI: 10.7863/ultra.15.02026.

19. Ulbricht L, Neves EB, Ripka WL, et al. Comparison between body fat measurements obtained by portable ultrasound and caliper in young adults. San Diego: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2012. p. 1952-5. DOI: 10.1109/EMBC.2012.6346337.

20. Muntean P, Neagu M, Amaricai E, et al. Using A-Mode Ultrasound to Assess the Body Composition of Soccer Players: A Comparative Study of Prediction Formulas. Diagnostics (Basel). 2023;13(4):690. DOI: 10.3390/diagnostics13040690.

21. Müller W, Lohman TG, Stewart AD, et al. Subcutaneous fat pattering in athletes: selections of appropriate sites and standardization of a novel ultrasound measurement technique: ad hoc working group of body composition, health and performance, under the auspices of the IOC Medical Commission. Br J Sports Med [Internet]. 2016 [citado 21/03/2023];50(1):45-54. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717413/

22. Müller W, Fürhapter-Rieger A, Ahammer H, et al. Relative Body Weight and Standardised Brightness-Mode Ultrasound Measurement of Subcutaneous Fat in Athletes: An International Multicentre Reliability Study, Under the Auspices of the IOC Medical Commission. Sports Med. 2020;50(3):597-614. DOI: 10.1007/s40279-019-01192-9.

23. Schmid-Zalaudek K, Brix B, Sengeis M, et al. Subcutaneous adipose tissue measured by B-Mode ultrasound to assess and monitor obesity and cardiometabolic risk in children and adolescent. Biology (Basel). 2021;10(5):449. DOI: 10.3390/biology10050449.

24. Störchle P, Müeller W, Sengeis M, et al. Measurement of mean subcutaneous fat thickness: eight standardised ultrasound sites compared to 216 randomly selected sites. Sci Rep. 2018;8(1):16268. DOI: 10.1038/s41598-018-34213-0.

25. Ryan Stewart H, O'Leary A, Paine E, et al. The relationship between skinfold and ultrasound measures of subcutaneous fat in untrained healthy males. Appl Sci (Basel). 2021;11(22):10561. DOI: 10.3390/app112210561.

26. Miclos-Balica M, Muntean P, Schick F, et al. Reliability of body composition assessment using A-mode ultrasound in a heterogeneous sample. Eur J Clin Nutr [Internet]. 2021 [citado 21/03/2023];75(3):438-45. Disponible en: https://doi.org/10.1038/s41430-020-00743-y

27. Nosslinger H, Mair E, Toplak H, et al. Measuring subcutaneous fat thickness using skinfold calipers vs. high-resolution B-scan ultrasonography in healthy volunteers: A pilot study. Clin Nutr [Internet]. 2022 [citado 21/03/2023];41:19-32. Disponible en: https://doi.org/10.1016/j.nutos.2021.11.007

28. Ingle AS, Kashyap NK, Trivedi S, et al. Assessment of Body Fat Percentage Using B-Mode Ultrasound Technique versus Skinfold Caliper in Obese Healthy Volunteers. Cureus. 2022;14(3):e22993. DOI: 10.7759/cureus.22993.

29. Pétursdóttir Maack H, Sundström Poromaa I, Lindström L, et al. Ultrasound estimated subcutaneous and visceral adipose tissue thicknesses and risk of pre-eclampsia. Sci Rep. 2021;11(1):22740. DOI: 10.1038/s41598-021-02208-z.

30. Artiles Santana A, Sarasa Muñoz NL, Machado Díaz B, et al. Adiposidad abdominal determinada por ultrasonido y antropometría en gestantes adolescentes y adultas. Medicentro Electrónica [Internet]. 2020 [citado 21/03/2023];24(1):19-35. Disponible en https://medicentro.sld.cu/index.php/medicentro/article/view/2730/2498

Descargas

Publicado

02-10-2023

Cómo citar

1.
Bahr-Ulloa S, Agüero-Gómez F, Carvajal-Veitía W. La antropometría aplicada en el ultrasonido como herramienta para la medición de la composición corporal. Rev Méd Electrón [Internet]. 2 de octubre de 2023 [citado 22 de enero de 2025];45(5):e5200. Disponible en: https://revmedicaelectronica.sld.cu/index.php/rme/article/view/5200

Número

Sección

ARTÍCULOS DE REVISIÓN